Osteoblast de- and redifferentiation are controlled by a dynamic response to retinoic acid during zebrafish fin regeneration.

نویسندگان

  • Nicola Blum
  • Gerrit Begemann
چکیده

Zebrafish restore amputated fins by forming tissue-specific blastema cells that coordinately regenerate the lost structures. Fin amputation triggers the synthesis of several diffusible signaling factors that are required for regeneration, raising the question of how cell lineage-specific programs are protected from regenerative crosstalk between neighboring fin tissues. During fin regeneration, osteoblasts revert from a non-cycling, mature state to a cycling, preosteoblastic state to establish a pool of progenitors within the blastema. After several rounds of proliferation, preosteoblasts redifferentiate to produce new bone. Blastema formation and proliferation are driven by the continued synthesis of retinoic acid (RA). Here, we find that osteoblast dedifferentiation and redifferentiation are inhibited by RA signaling, and we uncover how the bone regenerative program is achieved against a background of massive RA synthesis. Stump osteoblasts manage to contribute to the blastema by upregulating expression of the RA-degrading enzyme cyp26b1. Redifferentiation is controlled by a presumptive gradient of RA, in which high RA levels towards the distal tip of the blastema suppress redifferentiation. We show that this might be achieved through a mechanism involving repression of Bmp signaling and promotion of Wnt/β-catenin signaling. In turn, cyp26b1(+) fibroblast-derived blastema cells in the more proximal regenerate serve as a sink to reduce RA levels, thereby allowing differentiation of neighboring preosteoblasts. Our findings reveal a mechanism explaining how the osteoblast regenerative program is protected from adverse crosstalk with neighboring fibroblasts that advances our understanding of the regulation of bone repair by RA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dev120204 2894..2903

Zebrafish restore amputated fins by forming tissue-specific blastema cells that coordinately regenerate the lost structures. Fin amputation triggers the synthesis of several diffusible signaling factors that are required for regeneration, raising the question of how cell lineagespecific programs are protected from regenerative crosstalk between neighboring fin tissues. During fin regeneration, ...

متن کامل

Retinoic acid signaling spatially restricts osteoblasts and controls ray-interray organization during zebrafish fin regeneration.

The zebrafish caudal fin consists of repeated units of bony rays separated by soft interray tissue, an organization that must be faithfully re-established during fin regeneration. How and why regenerating rays respect ray-interray boundaries, thus extending only the existing bone, has remained unresolved. Here, we demonstrate that a retinoic acid (RA)-degrading niche is established by Cyp26a1 i...

متن کامل

Laser ablation of the sonic hedgehog-a-expressing cells during fin regeneration affects ray branching morphogenesis.

The zebrafish fin is an excellent system to study the mechanisms of dermal bone patterning. Fin rays are segmented structures that form successive bifurcations both during ontogenesis and regeneration. Previous studies showed that sonic hedgehog (shha) may regulate regenerative bone patterning based on its expression pattern and functional analysis. The present study investigates the role of th...

متن کامل

19-P022 The roles of Drosophila melanogaster developmental gene orthologues in Schmidtea mediterranea regeneration

The most prominent and dramatic example of regeneration in vertebrates is the complete reconstitution of amphibian limbs and fish fins by epimorphic regeneration. Research into the molecular regulation of this fascinating biological problem is of high medical interest due to the potential application in replacing old or damaged tissues in humans. Retinoic acid (RA), a small lipophilic molecule ...

متن کامل

19-P021 Analysis of genes involved in post-transcriptional regulation of gene expression in planarians

The most prominent and dramatic example of regeneration in vertebrates is the complete reconstitution of amphibian limbs and fish fins by epimorphic regeneration. Research into the molecular regulation of this fascinating biological problem is of high medical interest due to the potential application in replacing old or damaged tissues in humans. Retinoic acid (RA), a small lipophilic molecule ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 142 17  شماره 

صفحات  -

تاریخ انتشار 2015